
1 

 

Parametric Examination including Brief Survey of Composite and 

Homogenous Closed Ended Cylindrical Pressure Vessels 

JACOB NAGLER 

Faculty of Aerospace Engineering,  
Technion,  

Haifa 32000  
ISRAEL 

syanki@tx.technion.ac.il, syankitx@Gmail.com 

Abstract:- This paper presents parametric design examination together with brief survey of 
composite and homogenous cylindrical pressure vessels with hemispherical ends. Two main 
kinds of composite and homogenous cylinders geometry were modeled and examined: thin 
and thick cylinders. Stress-strain relationships of the cylinders have been derived as a result 
of their model equation solution. Additionally, reinforced wrapping method effect on thin 
cylinder strength was presented and examined. Also, compound cylinder theory was 
discussed and main results were presented. Moreover, thick walled composite cylinders in 
polar coordinates theory has been developed and displayed together with other filament 
winding methods through analytic modeling and numerical examination. Finally, failure 
criteria of composed and homogenous cylinders were presented.  
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I. Introduction 

Pressure vessels are in use for a long 
time. Usually, the production of pressure 
vessels was done from only one specific 
material (ceramic or wood in ancient 
period while metal or alloy in modern 
times). During the years, more and more 
technology applications have made it 
possible to produce vessels from more than 
one material. Military and aerospace 
industry special products requirements of 
high strength and light-weight have lead 
(together with other reasons) to the use of 
composite materials. For example, on 
today's aerospace market 30-50% of the 
modern airplane structural components are 
made of composite materials. In particular, 
cylindrical or other vessels components 
which are usually have been manufactured 
by filament winding. Although they appear 
to be simple structures, composite and 
homogenous (non-composite material) 
cylinders (or other kinds of pressure 
vessels) are among the most difficult to 
design. Filament-wound composite 

pressure vessels have found widespread 
use not only for military use but also for 
civilian applications.  

Pressure vessel is a closed container 
designed to hold gases and/or liquids at 
a pressure substantially different from the 
ambient pressure. The pressure differential 
is dangerous and fatal accidents have 
occurred in the history of pressure vessel 
development and operation. Consequently, 
pressure vessel design, manufacture, and 
operation are regulated by engineering 
authorities backed by legislation. For these 
reasons, the definition of a pressure vessel 
varies from country to country, but 
involves parameters such as maximum safe 
operating pressure and temperature. 
Pressure vessels are used in a variety of 
applications like aerospace engineering 
(airplane-cabin, fuel-chamber and engine-
chamber), mechanical engineering 
(pneumatic and hydraulic reservoirs), 
chemical engineering (oil refinery and 
distillation towers), etc.   

Pressure vessels can theoretically have 
almost any shape – the prevalent section 
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shapes are of spheres, cylinders and cones. 
A common design is a cylinder with end 
caps called 'heads'. Head shapes are 
frequently either hemispherical or dished 
(tori-spherical). More complicated shapes 
have historically been much harder to 
analyze for safe operation and are usually 
far more difficult to construct. 
Theoretically, a spherical pressure vessel 
has approximately twice the strength of a 
cylindrical pressure vessel with the same 
wall thickness [1]. Although spherical 
shapes are difficult to produce, and 
therefore more expensive, so most pressure 
vessels are cylindrical with 2:1 semi-
elliptical heads or end caps on each end. 

Theoretically, almost any material 
with good tensile properties that is 
chemically stable in the chosen application 
could be employed. However, pressure 
vessel design codes and application 
standards (see App. - Table A.1.) contain 
long lists of approved materials with 
associated limitations in temperature 
range. 

Despite the growing use of composite 
materials, pressure vessels which are made 
of steel are still relevant. To manufacture a 
cylindrical or spherical pressure vessel, 
rolled and possibly forged - parts would 
have to be welded together. Some 
mechanical properties of steel achieved by 
rolling or forging, could be adversely 
affected by welding, unless special 
precautions are taken. In addition, current 
standards dictate the use of steel with a 
high impact resistance, especially for 
vessels used in low temperatures. In 
applications where carbon steel would 
suffer corrosion, special corrosion resistant 
material should also be used. 

Some pressure vessels which are made 
of composite materials, such as filament 
wound composite using carbon fiber are 
held in place with a polymer. Due to the 
very high tensile strength of carbon fiber 
these vessels can be very light, but are 
much more difficult to manufacture. The 
composite material may be wound around 

a metal liner, forming a composite 
overwrapped pressure vessel. 

In order to prevent leaking and protect 
the structure of the vessel from the 
contained medium, pressure vessels may 
be lined with various materials like metals, 
ceramics, or polymers. This liner may also 
carry a significant portion of the pressure 
load [2 -3]. 

Pressure vessels may also be 
constructed from concrete (PCV) or other 
materials which are weak in tension. 
Cabling, wrapped around the vessel or 
within the wall or the vessel itself, 
provides the necessary tension to resist the 
internal pressure. A "leak-proof steel thin 
membrane" lines the internal wall of the 
vessel. Such vessels can be assembled 
from modular pieces and so have "no 
inherent size limitations" [4]. There is also 
a high order of redundancy thanks to the 
large number of individual cables resisting 
the internal pressure.  

Analytical solution for stress field 
development in thin or thick walled non-
composite (homogenous) pressure vessels 
were made by R. Budyans et al. [5]. In 
cases where composite vessels calculations 
are more complicated, Gibson [6], Kaw 
[7], Kollar and Springer [8], Baker et al. 
[9] and others have laid the fundamentals 
of such calculations. 

On the one hand, composite vessels 
are lightweight and with higher strength in 
the relevant directions than steel or 
aluminum counter-parts. On the other 
hand, manufacturing methods can be more 
complex and expensive than metallic 
counterparts. 

This paper presents stress-strain 
relationships models of composite and 
homogenous cylindrical vessels including 
their hemispherical ends. 

II. Analytical Model of Homogenous 

Cylindrical Vessel with Hemispherical 

Ends  

The circular cylinder can be classified 
into two types: thick walled cylinder and 
thin walled cylinder. A thin walled 
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cylinder is a cylinder which his tangential 
stress (which is also called 'hoop stress' or 
'circumferential stress') is inversely 
proportional to the thickness and is directly 
proportional to the inner radius. Also, the 
tangential stress should be developed in 
specified limits. The transition from "thin" 
to "thick" definition occurs asymptotically 
when the inner radius is no longer 10 times 
('thumb rule') greater than the thickness of 
the cylinder. As a result, tangential and 
radial stresses are varied non-linearity with 
inner radius. In the following sections, 
these differences will be demonstrated, 
beginning with thin walled cylinder 
subject. 

A. Thin Walled Cylinder with 

Hemispherical Ends 

Stress field development in thin 
walled cylinder as appear in Fig. 1 is 
described broadly by Önder [10]. The main 
assumptions for using this method are: 

1. Plane sections remain plane. 
2. /   10i cr t ³ ('Thumb-rule') 

with ct being uniform constant cylinder 

thickness and ir is the internal radius. 

3. The applied pressure is the internal 
pressure only, ip (since external 

pressure may cause buckling of the 
wall). 
4. Material is linear-elastic, isotropic 
and homogeneous. 
5. No variation of stress distributions  
throughout the wall thickness. 
6. Fluid density is negligible.  
7. No rotation. 
8. Hemispherical ends. 

Tangential stress in the cylinder can be 
expressed by:  

            2 2 ,     i i
i i c

c
c c

p r
r Lp t L

tq qs s= = .   (1)   (1) 

while L is the cylinder length. 
Hence, the maximum tangential stress is:   

                     
,max

( / 2)i i c

c
c

p r t

tqs
+

= .       (2)    

The longitudinal stress in the cylinder is 
calculated as follows: 

         

 22 ,     
2

i i
i c i i

c
c cl l

p r
rt p r

t
s p p s= = ,     (3)  

while the tangential stress in the 
hemispherical ends is expressed by: 

    

22 ,     

2

i s i i

i i

s

s

s sl

rt p r

p r

t

q

q

p s p

s s

=

= =
,    (4) 

where st is the spherical surface thickness. 

The longitudinal stress in the 
hemispherical ends  

sl
s has the same 

calculation as  .
sq

s By the way, Eqs. (3-4) 

assumes 2 1ct << in spherical surface 

calculation by

2 2

2 2

( )

2

i c i

i c c i i

c

c

l

l

r t r

rt t p r

s p

s p p

é ù+ - =ë û

é ù+ =ë û
,  

since ct is small enough. 

 
Using Eq. (4) calculation, the maximum  
tangential stress in the spherical ends is: 

      
,max

( / 2)

2
i i s

s
s

p r t

tqs
+

= .    (5) 
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Figure 1. Thin cylindrical shell illustrations: a. 
Thin cylindrical shell with hemispherical ends – 
half section view. b. Cross section of hemispherical 
end ('Head'). 

 
It seems that if s ct t= , then tangential 

stress in the spherical ends is half of the 
tangential stress in the cylinder body. It's 
also true for the longitudinal stress. 
Moreover, longitudinal stress has no 
dependency in hemispherical thickness.  
 The relation between st and ct is defined 

by hoop strain relations as follows: 

  
So, it seems that thickness ratio depends 
only on Poisson's ratio. 
 More about the joint region between 
cylinder and hemispherical ends can be 

studied from Bhaduri [14]. The strength of 
the cylinder component is dependent on 
joint efficiency (like welding or riveted 
joints/nails, etc). This efficiency is 
expressed in the thin layer model by using 
efficiency constanth with Eqs. (1, 3-4) as 

follows:

,  ,   
2 2

i i i i i i

c c l c s
c sc

s
l

p r p r p r

t t tq qs s s
h h h

= = = ,   (7) 

while ,  , c l sh h h denote efficiencies of 

tangential, longitudinal and spherical 
joints, respectively. 
 On the one hand, it can be observed 
from Eqs. (3-4) that thickness increasing 
causes tangential stress decreasing which 
is excellent for material strength. On the 
other hand, it results in an increase in 
density, which means that more mass for 
the aircraft or rocket payload is added. 
Realization of this problem may lead to 
geometrical trade-off change in 
geometrical ends, or in the general shape, 
which would have a positive effect on 
decreasing mass and strength. For 
example, it's well known [5,11] that 
spherical shape yields equality between 
longitudinal and tangential stresses. The 
'pay' for this kind of shape takes place in 
manufacturing methods which are very 
expensive. This later proposal of changing 
total geometry won't be checked in this 
essay. Alternatively, using other materials 
and different thickness ratios (wrapping 
methods) will be examined. In the next 
section, the thickness aspect will be 
discussed in the context of thick wall 
cylinder. 

B. Thick Walled Cylinder with 

Hemispherical Ends 

 In case where the former assumption 
('thumb rule') of ratio between thickness 
and inner radius ratio doesn't exist where 

/   10i cr t < (see Fig. 2.a), we will use the 

following procedure. The relevant 
assumptions of this case are: 

1. Plane sections remain plane. 

(a) 

(b) 

(6) 
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2. /   10i cr t < with ct being uniform 

constant cylinder thickness and ir is the 

internal radius. 
3. Uniform internal ( ip ) and/or 

external ( op ) pressure.  

4. Deformation is symmetrical about 
z axis. 
5. Material is linear-elastic, isotropic 

and homogeneous. 
6. Fluid density is negligible. 
7. No rotation.  
8. Hemispherical ends. 

Firstly, general polar equations of element 
equilibrium using Fig. 2.b will be written: 

1
ˆ :  0

21ˆ :  0

r rr
r

r r

r F
r r r

F
r r r

q q

q q q
q

t s ss
q

s t t
q

q

¶ -¶
+ + + =

¶ ¶
¶ ¶

+ + + =
¶ ¶

.  (8) 

while rs and qs denote the tangential and 

radial stresses acting normal to the sides of 
the element. ,rF Fq represent the radial and 

tangential body forces, respectively. Since 
fluid density is neglected and no rotation is 
exist (assumptions 6 + 7), it can be 
concluded that 0.rF Fq= =  Moreover, 

shear stress fulfills that  0rqt = due to 

symmetrical deformation around  z axis 
(assumption 2). All these assumptions lead 
to one equilibrium equation in r̂ direction 
only: 

0rr

r r

qs ss -¶
+ =

¶
,   (9) 

while strains behave according to Hook's 
law by: 

( )

( )

1

1

1 1
0

r r

r

r r

u

r E

u

r E

u

r G

q

q q

q q

e s us

e s us

g t
q

¶
= = -
¶

= = -

¶
= = =

¶

 .   (10) 

where  u is the radial direction 

displacement. ,  E G represent modulus Young 

and shear modulus, respectively.   u is Poisson's 
ratio. Solving Eq. (10) for stress field yields the 
following 

relations:

( )

( )

2 2

2 2

1 1

1 1

r r

r

E E u u

r r

E E u u

r r

q

q q

s e ue u
u u

s e ue u
u u

¶æ ö= + = +ç ÷- - ¶è ø
¶æ ö= + = +ç ÷- - ¶è ø

(11) 

 
 

  
 

 
Figure 2. a. Thick cylindrical subjected to both 
internal and external pressure. b. Stress element in 
polar coordinates system. 

 
Substituting the above relations (11) into 
equilibrium Eq. (9) results in the following 
radial displacement equation: 

( ) ( )

2

2 2

1
0 

with B.C.: ,
i o

r i r or r r r

u u u

r r r r

p ps s
= =

¶ ¶
+ - =

¶ ¶
= - = -

(12) 

The solutions of for stress field and radial 
displacement by solving Eq. (12) using 
(11) are: 

(a) 

(b) 
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2 2

2 2

2

2 2
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r
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u r
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p p r r
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q

u

u

s

s

æ ö--æ ö= ç ÷ç ÷ -è øè ø

-+ æ öæ ö+ç ÷ ç ÷-è ø è ø

- - æ ö= - ç ÷- - è ø

- - æ ö= + ç ÷- - è ø

 (13) 

In case where each of these pressures 
( ip or op ) acts alone, qualitative stress 

distributions are shown in Fig. 3. Also, 
quantitative stress distributions are shown 
in Fig. 4.a-b for / 8o ir r = .  

Since we deal with hemispherical ends 
which takes reactions from internal and 
external pressures ( ip and op ), the 

longitudinal direction needs to be 
considered. By simple calculation we get 
the following expression for cylinder 
longitudinal stress: 

( )2 2 2 2

2 2

2 2

,  o i i i o oc

i i o o

c
o i

l

l

r r p r p r

p r p r

r r

s p p

s

p - = -

-
=

-

. (14) 

Additionally, longitudinal stress in the 
thick cylinder ends is (using hemispherical 

surface area - 22 rp ): 

( )

( )

2 2

2 2

2 ,  

2

i s i i i o ss

i i o s

ss
i s i

l

l

r r r p r p r

p r p r

r r r
q

s p p

s s

p - = -

-
= =

-

. (15) 

while
sq

s represents the tangential stress in 

the hemispherical end, and sr is the 

spherical outer radius ( i sr t+ ). 
Table 1. Maximum radial stress value according to 
Eq. (13). 

Internal and External 
pressures ratios r  ,maxrs  

i op p>  ir r=  ip  

   

o ip p>  or r=  op  

It seems from Table.1 that the maximum 
radial stress value according to Eq. (13) is 
obtained for ir r=  while .i op p> Otherwise 

( )i op p< , the maximum radial stress is 

obtained for or r=  and equals op . 

 
Figure 3. a. Qualitative stress and displacement 
distribution section map of thick cylinder subjected 
to internal pressure. b. Qualitative stress and 
displacement distribution section map of thick 
cylinder subjected to external pressure. 

 
Separate discussion on the maximum 

tangential stress which occurs at either the 
inner, or outside edge according to 
pressure ratio, will be elaborated here. 
According to Ugural and Fenster [13], 
tangential stress limitations of thick 
cylinders were studied firstly by Ranov 
and Park [15]. The examination will be 
divided into three parts: (1) Internal 
pressure only, (2) External pressure only 
and both (3) Internal & External pressures. 
In cases (1) + (2), the maximum tangential 
stress is obtained at ir r= as shown in 

Table. 2, but there are several other cases 
when both pressures are acting while the 
maximum tangential stress is obtained 
at or r= . In order to investigate those cases, 

we will use the following notation 
according to [13]: 

22

2 2

1 1
,  

1 1

,  

o
i i

o o

i i

rPR P
p p

R r R

p r
P R

p r

qs
- -æ ö= + ç ÷- -è ø

= =

 (16) 

Hence, 
2 2

2

1 2

2
i

o

PR R
S

PR P

q

q

s
s

- +
= =

- -
.  (17) 

The maximum value magnitude for 
tangential stress is obtained at the red 
( 1S = ) and the purple ( 0S = ) dashed lines 

Pi 

sq 

sr 

(a) 

Po 

 

sq 

sr 

(b) 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Jacob Nagler

E-ISSN: 2224-3429 141 Volume 9, 2014



7 

 

in the outer surface region ( or r= ) as 

shown in Fig.4.c. The absolute 
displacement distributions graphs for both 
internal and external pressures are 
exhibited in Fig.4.d. These graphs behavior 

fits with tangential and radial stress 
behavior. Excellent result compatibility 
and sustaining was found between Ugural 
& Fenster [13] results and Fig. 4. 
 

 
Comparison between thick cylinder to thin cylinder, in case where only internal pressure 

operates (since buckling can occur in thin vessel with external pressure) leads to conclusion 
that qs diminishes with thickness in thick cylinder because of denominator and numerator 

decreasing. By saying that 

, 
since o ir r t- > and so o ir r t+ >  is obtained. As a result, by using some algebraic 

manipulations, 
Thick cylinder Thin cylinderq qs s<  inequality is obtained.  

 
Table 2. Maximum tangential stress value according to Eq. (13). 

Case r  ,maxqs  

Internal pressure only 
ir r=  2 2

2 2
o i

i

o i

r r
p

r r

+
-

 

External pressure only 
ir r=  2

2 2

2 o o

o i

r p

r r
-

-
 

Internal and External pressures 
ir r= in the bald lines – Fig.4.c See Fig.4 

Internal and External pressures 
or r= in the dashed lines – Fig.4.c See Fig.4 
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Figure 4. Illustrations for thick walled cylinder subjected to: a. Internal pressure – radial and tangential stresses 
and displacement distributions. b. External pressure – radial and tangential stresses and displacement 
distributions. c. Internal and external pressures – tangential distribution. d. Internal and external pressures – 

displacement distribution for 0.3u = . 
 

C. Homogenous Cylindrical Vessel 

Failure Criteria 

In this section, we will discuss the failure 
criteria of homogenous (non-composite 
material) cylindrical vessels. According to 
[13] there are five main criteria: 
1. Maximum principal stress criterion 
assumes that material failure occurs when 
the maximum principal stress ( 1s ) in a 

material element exceeds the uniaxial 
tensile strength of the material. Practically 
speaking, one should check the maximum 
stresses ( ,max ,max ,max, ,r lqs s s ) according to 

relevant case (Thin-wall or Thick wall) and 
compare it to the material tensile elastic 
strength (yield stress - yps ):  

,max ,max ,max or  or r yplqs s s s£ . (18) 

Alternatively, this criterion can be used in 
order to calculate the desirable pressure 
value (  or o ip p ).  

2. Maximum shearing stress criterion also 
known as Tresca yield criterion is often 
used to predict the yielding of ductile 
materials. Yield in ductile materials is 
usually caused by the slippage of crystal 
planes along the maximum shear stress 
surface. Therefore, a given point in the 
body is considered safe as long as the 
maximum shear stress at that point is under 
the yield shear stress ypt (which is usually 

half of the metal tensile yield stress -
/ 2yps ) obtained from a uniaxial tensile 

test. This criterion should fulfill: 

max 2
r

y
qs s

t t
-

= £ .    (19) 

(c) 

(b) 

(d) 

(a) 
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Alternatively, it can be used to evaluate 
pressure values (  or o ip p ). This theory is 

used usually with brittle materials. 
3. Energy of distortion theory proposes 
that the total strain energy can be separated 
into two components: the volumetric 
(hydrostatic) strain energy and the shape 
(distortion or shear) strain energy. It is 
proposed that yield occurs when the 
distortion component exceeds the strain at 
the tensile yield point for a simple tensile 
test. A formulated model for this theory is 
in the following form: 

 ( )2 2 2 2 ,r r r ypl l lq q qs s s s s s s s s s+ + - + + £ (20) 

while all components of shear stress are 
zero (assumption). 
Alternatively, this criterion can be used 
in order to calculate the desirable 
pressure value (  or o ip p ).  

4. Maximum principal strain theory was 
proposed by St.Venant. According this 
theory, yield occurs when the maximum 
principal strain reaches the strain 
corresponding to the yield point during a 
simple tensile test. In terms of the principal 
stresses, it is determined by the following 
equation: 

      ( )r yplqs u s s s- + £ .   (21) 

Alternatively, this criterion can be used in 
order to calculate the desirable pressure 
value (  or o ip p ).  

5. Octahedral shearing stress theory will 
be defined with notes by Wolf et al. [16]. 
Octahedral plane cuts across one of the 
corners of a principal element, so that the 
eight planes together form an octahedron. 
Figure 5 illustrates the orientation of one 
of the eight octahedral planes which are 
associated with a given stress state. All 8 
planes have identical normal stresses. 
Also, normal stresses don't deform the 
octahedron. Moreover, shear stresses are 
also with identical values and they may 
deform the octahedron without changing 
its total volume. The criterion importance 
is derived from the fact that octahedral 
shear stress is smaller than the highest 

principal shear stress, but it constitutes a 
single value that is influenced by all three 
principal shear stresses. The criterion is 
given by the following condition: 

( ) ( ) ( )2 22
2

3 3 2

r r yp yp

oct

l lq qs s s s s s s s
t

- + - + -
= £ » (22) 

while all shear stress components equals to 
zero (assumption). This criterion can be 
applied with all materials, since no 
material properties are involved. 

 
 

Figure 5. Octahedral Planes associated with a 
given stress state. 

  
In conclusion, in order to understand 

failure mechanism, all failure criteria 
should be checked and compared one 
against each other. Usually, octahedral 
shearing stress criterion and energy of 
distortion criterion are coincided with each 
other (see also Ref. [13]).  

III. Compound Cylinders 

Compound cylinders are combined of 
two cylinders which supposed to be more 
effective by reducing tangential and radial 
stresses and to hold large pressures. There 
are several different methods of vessels 
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production, such as cooling & heating, 
wrapping methods, pressure compression 
methods, shrinking methods, extrusion, 
etc. The model calculation here assumes 
that both cylinders are made of two 
different materials with appropriate 
modulus Young and Poisson's ratio in the 
inside ( )iiE u,  and outside ( )ooE u,  

cylinders, respectively. It is assumed that 
hemispherical ends will not be included in 
this section. 

Suppose that external radius of the inner 
cylinder is larger than internal radius of the 
outer cylinder by difference ofd as shown 
in Fig.6.a. 

 

 
Figure 6. Compound cylinders sections: a. Before 
insertion. b. After insertion. 

This phenomenon causes the outer 
cylinder to 'feel' an internal pressure. As a 
result of Newton's third law, the inner 
cylinder 'feels' an external pressure. Due to 
the radial interferenced between both outer 
and internal cylinders, an internal pressure 

contact is developed which causes to the 
following equilibrium of radial 
displacement: 

 
while  R is the nominal radius. Eq. (23) has 
been obtained using Eq. (13) for special 
cases (internal and external radial 
displacements) whereas ,  i op p have been 

alternatively switched to interface pressure 
( cp ), respectively. Interface pressure 

contact can be isolated using Eq. (23) in 
the following form: 

2 2 2 2

2 2 2 2

c

i o
i o

i i o o

p
r R r RR R

E r R E r R

d

u u

=
æ öæ ö æ öæ ö+ +

- + +ç ÷ç ÷ ç ÷ç ÷- -è øè ø è øè ø

(24) 

while all internal stresses ( , ,r lqs s s ) 

should be calculated according to cylinder 
pressure behavior (internal pressure or 
external pressure). Parameter optimization 
problem of compound cylinders were 
solved analytically and numerically for 
two and three layers with various 
constraints by Majzoobi & Ghomi [17] and 
by Miraje & Patil [18], respectively. Ref. 
[18] gives exact procedure for estimating 
the optimal order of the layers together 
with tangential stress expressions. 
 In addition, when the compound 
cylinder is subjected to a working pressure 
(internal pressure), a reacting pressure is 
developed at the contact surface of the 
mating cylinders and is given by [17]: 

2 2 2 2 2
1 1

1 22 2 2 2
2 2

2

1

i
r

i o

i i o

p
p

R r r RE ER

r R r E r R E
u u

=
é ùæ ö é ù+ +
ê ú- + - +ç ÷ ê ú- -ê úè ø ë ûë û

 (25) 

 The pressures according to Eqs. (24-25) 
act as external pressures for the inner 
cylinder and as internal pressures for the 
outer cylinder. Hence, we get the following 

(a) 

(b) 

(23) 
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relations for internal and external pressure 
vessel: 

Internal layer: Working pressure 

(internal pressure),  

Outer layer: 0,

i

o c r

o i c r

p

p p p

p p p p

=

= +

= = +

 (26) 

while stresses in both cylinders will be 
calculated using Eqs. (13, 26).  
 The generalized theory of compound 
cylinder with n  layers would be developed 
here, according to following procedure. 
Consider a general compound cylinder 
with concentric n  cylinder layers as 
illustrates below in Fig.7. Each cylinder 
layer radius is noted by: 

1 2 3 4, , , ... ,...,j nr r r r r r while j range 

fulfills1 j n£ £ . Therefore, the nominal 

radius jr is represented by 2,4,..,j = . Each 

adjacent pair layers radial interference will 
be noted by 1 2 2 3 3 4, , ,...d d d- - - 1, 1,,....,k k n nd d- -  

while 2 k n£ £ . 

 
Figure 6. Compound cylinder with n cylinder 
layers.  

 
Also, each layer has its own material 
properties such as  

1 1 2 2( , ), ( , ),..., ( , ),...( , )j j n nE E E Eu u u u . 

Further analytic examination of the 
problem would be divided into three main 
parts: (a) internal pressure inside the inner 
layer ( ip ), (b) external pressure at outer 

layer ( op ), or (c) both internal and external 

pressures. This section presents only the 
first part examination (see explanation 
below). The solution for internal pressure 
at the inner layer is shown in Table. 3 
below. Notice that solution of compound 
cylinders with external pressure only (b) is 
the same as in this case (a) with one 
distinction - calculation should begin from 
outer layer to the inner layer. For more 
information see Ref. [17-18]. The case of 
both external and internal pressure 
operating (c) is required more complicated 
calculations with convergence processes. 

1r 

2r 
3r 

4r 

5r 

kr 

nr 
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Table 3. General solution for compound cylinder subjected to internal pressure. 

Layers Radial interference (d ) Contact pressure ( cp ) 

1,2  1 2d - (given) 
1 2

1 2 2 22 2
3 22 1 2 2

1 22 2 2 2
1 1 2 2 3 2

p
r rr r r r

E r r E r r

d

u u

-
- =

æ öæ öæ ö æ ö ++
- + +ç ÷ç ÷ç ÷ ç ÷- -è øè ø è øè ø

 

2,3 2 3 1 2u ud - = +  
2 3

2 3 2 2 2 2
3 2 3 3 4 3

2 32 2 2 2
2 2 3 3 4 3

p
r r r r r r

E r r E r r

d

u u

-
- =

æ ö æ öæ öæ ö + +
- + +ç ÷ ç ÷ç ÷ç ÷ - -è øè ø è øè ø

 

… … … 

1,k k-  
1, 1k k k ku ud - -= +  

Should be calculated 
according Eq. (13) 

1,
1, 2 2 2 2

3 2 3 3 4 3
2 32 2 2 2

2 2 3 3 4 3

k k

k kp
r r r r r r

E r r E r r

d

u u

-
- =

æ ö æ öæ öæ ö + +
- + +ç ÷ ç ÷ç ÷ç ÷ - -è øè ø è øè ø

 

Layers rs and qs due to contact pressure 

1,2  
1 1 1 2 1 2 1 20 1 2Layer 1 Layer 1

and (Substitute in Eq.(13): , , , )r ic rp p p p r rqs s
- - -
= +  

2,3 
2 3 2 3 2 30 2 3Layer 2 Layer 2

 and (Substitute in Eq.(13): , , , )r ic rp p p p r rqs s
- - -
= +  

… … 

1,k k-  1Layer Layer 2, 1 2, 11, 1, 1, 1,
 and (Substitute in Eq.(13): , , , )

while 3  and 2

r k kk k m m m mk k k k k k k ko c r c rip p p p p p r r

m n k n

qs s -- - - -- - - -
= + = +

£ £ £ £
 

 

IV. Composite Cylinders with 

Hemispherical Ends 

 This section presents analysis methods 
of composite cylinder. Cylinders which are 
formed using composite materials have 
been investigated for the last four decades. 
Two researchers from NASA Corporation, 
Nemeth and Mikulas [19] have been 
investigated stiffness and other laminated - 
composite cylinder parameters of buckling 
phenomenon. Furthermore, Tatting [20] 
has examined design parameters of 
variable stiffness composite cylinders. 
Since we are dealing with composite 
material, it will be useful to mention that 
there are four main types of composite 
materials structures: fiber, sandwich, 
honeycomb and multi – phases. For more 
information see Ref. [9,21].  
 This section will be focused on the 
following subjects: 

· Wire wound thin cylinders with 
hemispherical ends. 

· Thick walled composite cylinders in 
polar coordinates. 

· Filament winding method estimation 
of composed cylinder. 

· Failure criteria of composite 
materials. 

A. Wire Wound Thin Cylinders with 

Hemispherical Ends 

  Wire wound thin cylinders which are 
also known as 'Wire wound thin cylinders' 
or 'Composite reinforcement'[23] are used 
to increase strength of thin cylinders to 
withstand high internal pressures without 
excessive increase in wall thickness as 
appear in Fig. 8. By using this method, 
weight and cost can be saved. Some ways 
of doing it use wound with high tensile 
steel tape or wire under tension. According 
to Hern [22], the reinforcement causes the 
cylinder to 'feel' an initial compressive 
hoop stress which must be overcome by 
the stresses owing to internal pressure 
before the material is subjected to tension. 
It remains at this stage before the 
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maximum allowable stress in the cylinder 
is exceeded. Calculating the tension that is 
developed in the tape during the winding 
process in order to ensure that the 
maximum hoop stress in the cylinder will 
not exceed a certain value, when the 
internal pressure is applied, will be 
performed here. This sub section takes step 
ahead with generalization of Hern's theory 
by regarding to hemispherical ends and 
initial internal pressure.   

 
Figure 7. Section of a thin cylinder with an 
external layer of tape wound on with a tension. 

 
The cylinder body initial state equilibrium 
is: 

 
while ,tapeqs represents the compressive 

stress, ,1ip is the initial internal pressure, ir - 

internal cylinder 
radius. tapecylinder ,t t represent the thicknesses 

of cylinder and tape, respectively. 
The equilibrium after changing internal 
pressure is: 

, ,,final final

, ,1 ,2

tape tape cylinder cylinder2 2 2 ,i i f

i f i i

Lt Lt r Lp

p p p

q qs s+ =

= +
(28) 

while ,i fp represents initial stress after 

adding, or  subtracting ,2ip  pressure. 

 Equating differences of cylinder strain 
and tape strain in the tangential direction 
leads to the following relation:

 

( ) ( )

( ) ( )

, ,, ,final initialfinal initial

, , , ,final final initial initial

tape tape tape tapetape tape

,tape ,cylinder
tape

cylinder cylinder cylinder cylinder cylinder cylinder

cylinder

l l

l l

E

E

q q

q q

q q

s u s s u s
e e

s u s s u s

- - -
D = = D

- - -
=

.  (29) 

while tapecylinder ,  u u are the Poisson's ratio of cylinder and tape, respectively. Next step is to 

determine , finalcylinderqs  using energy of distortion criterion (20): 

( ) ( )
2 2

2
, , , ,final final final finalcylinder cylinder cylinder cylinder yl lq qs s s s s+ - £ .   (30) 

cylinderqs  

tapeqs
 

cylinder
t  

tape
t  

Cylinder 

Outer Tape Covering 

(27) 
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Therefore, by solving Eqs. (27-30) together with longitudinal expression (3) we get the 
following relations for cylinder – tape region in Table. 4. 
 

Table 4. General solution for wire wound thin cylinders case. 
Case 

,cylinderqs  ,tapeqs  ,cylinderls  ,tapels  

Initial 
,1 , initialtape tape

cylinder

i ir p t

t

qs-
 

,,1
, final

,1 ,

tape cylinder

cylinder tape tape
cylinder

tape tapecylinder cylinder cylinder

tape tape

cylinder cylinder

tape tape cylinder

cylinder

1

2

i fi

i

i i f

i

t E E pp
r

t E E t t

E t

E t

Ep p
r

t E t

qs

uu

æ ö æ ö
- + -ç ÷ ç ÷ç ÷ ç ÷

è ø è ø +
-

æ ö-æ ö
-ç ÷ç ÷çè øè ø

tape tape

cylinder cylinder

1
E t

E t

÷

-

 ,1

cylinder2
i ip r

t
 ,1

tape2
i ip r

t
 

Final 

2

, ,2

cylinder cylinder

3
4 32

i f i i f i

y

p r p r

t t
s

æ ö
+ - ç ÷ç ÷

è ø
 

,, finalcylinder cylinder

tape

i i ft r p

t

qs -
 

,

cylinder2
i f ip r

t
 ,

tape2
i f ip r

t
 

 
It's only left to examine the hemispherical ends stress behavior (especially, when very high 
pressures act, we want to strength the hemispherical ends). In similar way to the cylindrical 
body, the hemispherical initial state equilibrium is: 

,   

while
sq

s represents the compressive stress and ,1ip is the initial internal pressure. 

The equilibrium after changing internal pressure is: 

2
,tape ,tape ,cylinder , , ,1 ,2, ,final finaltape cylinder2 ( ) 2 ,   i s s i s i i f i f i is s

r t t rt r p p p pq qs p s p p+ + = = + . (32) 

Now, by equating between strain differences of hemispherical ends and hemispherical tape 
region, we obtain the following relation: 

 

( ) ( )

( ) ( )

, ,, ,final initialfinal initial

, ,, ,final initialfinal initial

tape tapetape tapetape tape

,tape ,cylinder
,tape

cylinder cylindercylinder cylindercylinder cylinder

,cylin

s ss s

s ss s

s s
s

s

l l

l l

E

E

q q

q q

s u s s u s
e e

s u s s u s

- - -
D = = D

- - -
=

der

. (33) 

Next stage is to determine 
, finalcylindersq

s using energy of distortion criterion (20) such as: 

( ) ( )2 2
2

, , , ,final final final finalcylinder cylinder cylinder cylinder ys s s sl l lqs s s s s+ - £ .   (34) 

 

(31) 
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Therefore, by solving Eqs. (31-34) together with longitudinal expression (4) we get the 
following expressions for spherical ends cylinder – tape region that are summarized in Table. 5. 
 

Table 5. General solution for wire wound thin cylinders case. 

Case 
,cylindersq

s  
,tapesq

s  
,cylindersl

s  ,tapesl
s  

Initial 
2

,1 ,tape ,tape, initial

,cylinder

tape 2( )

2

i i i s ss

i s

r p r t t

rt

qs- +
 See Eq. (35) 

,1

,cylinder2
i i

s

p r

t
 

( ),1 ,tape

,tape2

i i s

s

p r t

t

+
 

Final 

2

, ,2

,cylinder ,cylinder

3
4 32

i f i i f i

y

s s

p r p r

t t
s

æ ö
+ - ç ÷ç ÷

è ø
 

2
, ,cylinder, final

,tape ,tape

cylinder 2

2( )

i i f i ss

i s s

r p rt

r t t

qs-

+
 

,

,cylinder2
i f i

s

p r

t
 

( ), ,tape

,tape2

i f i s

s

p r t

t

+
 

     

( ) ( )
2

, ,cylinder, ,tapefinal
,1 ,

,tape ,tape ,tape

, initial ,tape ,tape

,cylinder

, final

cylinder tape

tape
,tape

,cylinder

,tape cy
cylinder

,cylinder

2

2( ) 2

( )
1

i i f i s i ss

i i f

i s s s

s
i s s

i s

s

s

s

s

s

r p rt r t
p p

r t t t

E r t t

E rt

E

E

q

q

q

s u

s

u
s

- +
+ -

+
= -

+
+

+ ( )
2

,1
,1 ,

,cylinder ,cylinder

,tape ,tape

,cylinder

linder

,tape

,cylinder

2 2

( )
1

i i

i i f i

s i s

i s s

i s

s

s

r p
p p r

t rt

E r t t

E rt

é ù
- -ê ú

ê úë û
+

+

 (35)  

In order to simplify this theory, it can be assumed that ,1 0.ip =  The reason for this 

assumption is because during winding process, or at the beginning of gas\liquid insertion, 
initial amount of gas\liquid pressure (initial state) is usually neglected (or not exists). 
Moreover, the whole development of Eqs. (27-35) represents transition from one state to 
another. Another simplification of calculation can be performed by assuming one equilibrium 
state, but only as long as the cylinder material has not yielded. Simplified stress-strain 
relations for one equilibrium state appear in Kunz notes [23]. However, this method can also 
be used for any other wrapping processes, not only for composite wrap. 
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Figure 8. Filament winding of cylindrical tanks. a 
– Helical layers cover cylinders plus domes. b – 
Hoop plies cover cylinder section only. These 
photos are taken from Kunz notes [23]. 

B. Thick walled composite cylinders in 

polar coordinates 

 In this sub-section a polar coordinates 
approach to composite cylinder will be 
introduced and developed. Suppose, we 
have a general cylinder with inner radius ir  

and outer radius or . Additionally, the 

cylinder is made of composite materials as 
illustrated in Fig. 9. Since averaged 
tangential elasticity modulus Eq and 

averaged radial elasticity modulus rE are 

functions of fibers number, they are not 
necessarily equal. The stress relations in 
polar coordinates are: 
   

r r r r

r

E E

E E

q

q q q q

s s
s s
ì ü é ù ì ü

=í ý í ýê ú
î þ ë û î þ

  (36)

  

 
Figure 9. Thick walled composite cylinder. 

 
while stress and strain field in more 
general form, including directions and 
stiffness characteristics are given by: 

     

 

( )

( )

2 2

2 2

1

1

1 1

1 1

r r

r

r

r
r r

r
r

E

E

EE

EE

q

q q
q

q
q

q
q q

e s us

e s us

u
s e e

u u
u

s e e
u u

ì = -ïï
®í

ï = -
ïî

ì = +ïï - -
í
ï = +
ï - -î

.    (37) 

Substituting stresses according to Eq. (37) 
in equilibrium Eq. (9) yields: 

     

 

0

r r

r rr r
r r

E E E

r r

E EE
E

r r r

q q q
q

q

e

e
e

¶ -é ù+ê ú¶ë û
-¶ ¶é ù+ + + =ê ú¶ ¶ë û

.  (38) 

Substituting axis-symmetric polar 
coordinates strains expressions according 
to Eq. (10) into Eq. (38) leads to: 

     

 
2

2
0

r r

r rr
r

E E E u

r r r

E EE u u
E

r r r r

q q q

q

¶ -é ù+ +ê ú¶ë û

-¶ ¶ ¶é ù+ + =ê ú¶ ¶ ¶ë û

. (39) 

In case where ,r rE Eq are constants we get 

the simple Euler' solution to Eq. (39) 
which is: 

(b) 

(a) 
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1 2

1 2

2

1,2

,  

4

2

k k

r r r

r r r

u A r A r

E E E E

E E E
k

q q q q

= +

æ ö æ ö-
± -ç ÷ ç ÷

è ø è ø=

, (40) 

while 1 2,A A are constants.  It is easy to 

observe that if 0rE q = we get 1,2

r

E
k

E

q= ± .  

 

 In order to find enclosed formula for radial displacement and stress field, one should use 
B.C. as assumed in (12) together with (37) in order to calculate 1 2,A A constants. This 

calculation can be easier using the following notation: 

         

1 1 2 2

1 1 2 2

1 1
11 2

2 1 1
21 2

1 2 1

2
3 4 2

1

1

1

1

k k k k
ir i r i r i r i

k k k k
or o r o r o r o

i

o

pAE k r E r E k r E r

pAE k r E r E k r E r

b b pA

b b pA

q q

q q

u u
u u u

u

- -

- -

é ù+ + ì üì ü
= -í ý í ýê ú- + + î þ î þë û

®

é ù ì üì ü
= -í ý í ýê ú- î þë û î þ

.  (41) 

Solving system (41) leads to the following constants definition: 

       
2 2

2 4 3 1
1 2

1 4 2 3 1 4 2 3

1 1
,  o i i o

r r

p b p b p b p b
A A

E b b b b E b b b b

u uæ ö æ ö- -- -
= =ç ÷ ç ÷- -è ø è ø

.       (42) 

Although it is required that the determinant will fulfill: 1 2

3 4

0
b b

b b
¹ . In case where 

0rE q = (when all fibers are given in tangential and radial direction only) we have: 

          
1 2

1 2

1 1
11 2

2 1 1
21 21

k k
ii ir

k k
oo o

pAk r k rE

pAk r k ru

- -

- -

é ù ì üì ü
= -í ý í ýê ú- î þ î þë û

,        (43) 

while 

       
( ) ( )

2 2 1 1

1 2 2 1 1 2 2 1

1 1 1 12 2

1 21 1 1 1 1 1 1 1
1 2

1 1
,  

k k k k

o i i o i o o i

k k k k k k k k
r ri o i o i o i o

p r p r p r p r
A A

E Ek r r r r k r r r r

u u- - - -

- - - - - - - -

æ ö æ ö- -- -
= =ç ÷ ç ÷

- -è ø è ø
 .      (44) 

 
Hence, the expressions for radial displacement in the general form where 0rE q =  is: 

        
( ) ( )

2 2 1 1

1 2

1 2 2 1 1 2 2 1

1 1 1 12

1 1 1 1 1 1 1 1
1 2

1 k k k k

k ko i i o i o o i

k k k k k k k k
r i o i o i o i o

p r p r p r p r
u r r

E k r r r r k r r r r

u - - - -

- - - - - - - -

é ùæ ö - -- ê ú= +ç ÷
ê ú- -è ø ë û

.   (45) 

while stress should be derived using Eqs. 
(10, 37). Notice that since we deal with 
hollow cylinder the case where 0r = is non-
relevant. The longitudinal stresses 
calculations of cylinder and spherical ends 
will be performed using Eqs. (14-15), 
respectively. Generally, accurate calculation 
is achieved by considering spherical ends 
using longitudinal modulus as explained by 
Gibson [6]. If the spherical ends are made of 
composite material, the radial and tangential 
stresses should be calculated separately with 
composite method calculations or FEM 
(finite element methods) [24-25]. From here, 

we will pass to our next discussion about 
winding method estimation of composed 
cylinder. 

C. Filament winding method estimation of 

composed cylinder 

This sub section requires more deeply 
overview of the composite material theory. 
The reason for that is derived from the 
composite material complex behavior. 
Initially, we will start with understanding the 
winding method which is used to produce the 
composed cylinder. According to Önder [10], 
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there are three kinds of winding patterns as 
shown in Fig.10 and will be elaborated here.  
· The first pattern is called 'Hoop Winding' 
which is known as tangential or 
circumferential winding. Hoop winding is 
characterized by high helical angle of 
90 [deg].Each full rotation of the mandrel 

advances the band delivery by one full 
bandwidth as shown in Fig. 10.a.  
· The second pattern is called 'Helical 
Winding' which is done by mandrel rotation 
at a constant speed while the fiber feed 
carriage transverses back and forth at a speed 
regulated to generate the desired helical 
angles as shown in Fig. 10.b.  
· The third pattern is called 'Polar Winding' 
which is done by fiber passing tangentially to 
the polar opening at one end of the chamber, 
reverses direction, and passes tangentially to 
the opposite side of the polar opening at the 
other end using the mandrel arm rotation 
about the longitudinal axis as shown in Fig. 
10.b. It is used to wind almost axial fibers on 
domed end type of pressure vessels. On 
vessels with parallel sides, a subsequent 
circumferential winding would be done. 
Clear observation on these three winding 
patterns leads to helical winding process 
advantage with great versatility. Usually, 
cylinder vessel composite are produced by 
means of helical winding. In each pattern, 
one can vary winding tension, winding angle 
and/or resin content in each layer of 
reinforcement until desired properties such - 
thickness and strength of the composite are 
achieved. The properties of the finished 
composite can be varied by the type of 
winding pattern selected. Trading off wind 
angle and circuits to close the patterns can 
create any combination of diameter and 
length by wound. 

  

 
Figure 10. Winding patterns from Önder [10]. a. 
Hoop winding. b. Helical winding. c. Polar winding. 

 
 In order to understand better the 
importance of the filament wound composite 
in this field, we will take a brief look on the 
following tables from Ref. [10]. According to 
Table A.2 in the Appendix, it seems that the 
material properties of filament wound 
composite are similar to those of stainless 
steel or titanium alloy, with benefit of low 
density. Moreover, there are many 
applications of filament wound composite 
method according to Table. A.3. 
  
 After this brief introduction of filament 
wound composite, we have enough 
motivation to go forward with filament 
wound composite vessel mechanics. Firstly, 
a brief introduction of composite material 
structure will be displayed. Composite 
materials are usually heterogeneous and 
anisotropic material.  Their uniqueness is in 

(a) 

(b) 

(c) 
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their mechanical properties behavior which is 
changed from point to point; point in the 
matrix has different properties when 
compared to the fiber. Also, properties in one 
direction are not necessarily the same in 
other direction. These comprehensions are 
forced microscopic and macroscopic 
observations. The building block of the 
composite material structure is the lamina. 
The lamina usually consists of fiber/matrix 
configurations. The micromechanics view 
deals with mechanical behavior of 
constituent material, interactions between 
these kinds of materials and the resulting 
behavior of single lamina in a laminate as 
shown in Fig.11. However, macroscopic 
view concentrates in the gross mechanical 
behavior of composite materials structures 
(laminate) without regard to constituent 
materials and their internal interactions as 
shown in Fig.11. During the following 
discussion, stress-strain relationships 
between microscopic and macroscopic 
mechanics will be developed. General 
information concerning composite materials 
and particularly about lamina stress-strain 
relationships can be found in Ref. [6-9]. 

 
Figure 11. Micro-mechanics and Macro-mechanics 
perspectives of composite material (Wikipedia) 

i. Thin Filament Wound Pressure Vessel 

 Suppose, we have a thin filament wound 
pressure vessel with non-principal 
coordinates ( ,x y ) (body coordinates) and 

principal material coordinates (1,2 ) as 

shown in Fig. 12-13. 

 
Figure 12. Lamina orientation in non-principal 
coordinates 

 
Figure 13. Filament wound pressure vessel in 
principal material coordinates 

 
In order to find stress-strain relationships, 
coordinates transform from body coordinates 
( ,x y ) into principal material coordinates 

(1,2 ) will be performed. The coordinate's 

orientation difference can be observed in Fig. 
13. Also, it's assumed that only internal 
pressure acts (external pressure may cause 
buckling). Using Eqs. (1, 3) for thin cylinder 
leads to: 

                             ,  ,  0.
2

i i i i

c c

y xyx
p r p r

t t
s s t= = =    (46) 

while these equations are assumed to be 
based on geometry and static equilibrium. 
 Since strain and stress are along fiber 
direction, we will pass to principal material 
coordinates (1,2 ) by using orthotropic 

lamina theory [6]. The stress-strain 
transformation relationships from lamina 
coordinates to principal coordinates are: 
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Substituting relations (46) into (47) leads to the 
principal material stresses and strains as 
follows:       

}{ 1 2 12

2 2

, ,

1 sin 1 cos sin 2
, ,

2 2 4
i i

c

p r

t

s s t

q q q

=

é ù+ +
ê ú
ë û

        (48) 

In order to find strain relations we will use the 
following transformation instead of (47):  

         

1 11 12 1

2 21 22 2

12 66 12

3 23 31

 ,  

while 0

S S

S S

S

e s

e s

g t

s t t

ì ìü é ù ü
ï ï ï ïê ú=í ý í ýê ú
ï ï ï ïê úþ ë û þî î

= = =

         (49) 

where the compliances and the engineering 
constants are related by the following 
equations: 

     
11 22

1 2

21 12
12 21 66

2 2 12

1 1
,  ,  

1
,  

S S
E E

S S S
E E G

n n

= =

= = - = - =
.     (50) 

 Hence,  
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1 2
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ê úæ ö+ +ê ú- ç ÷ê úè ø
ê ú
ê ú
ê ú
ë û

      (51) 

Resultant numerical analyzing of Eqs. (48, 
51) leads to the following graphs using 

MATLAB program. While all stresses are 

normalized by i i

c

p r

t
. Also, strains of the first 

principal, second principal and shear are 
normalized 

by
1 2 12

,  ,  , respectively.i i i i i i

c c c

p r p r p r

t E t E t G
 Notice 

that strain numerical calculation is based on 
the following data: 1 2E E=  and 12 0.25u = . 

 

 
Figure 14. Normalized material principal stresses Vs. q  

 
Figure 15. Normalized material principal strains Vs. q  

 
The following conclusions have been 
deduced using Fig.14-15: 

· Maximum first principal stress and 
strain ( 1,max 1,max,s e ) together with 

minimum second principal stress 

( 2,mins ) are obtained at 0 090 ,90q = - . 

(47) 
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· Minimum first principal stress and 
strain ( 1,min 1,min,s e ) together with 

maximum second principal stress 

( 2,maxs ) are obtained at 00q = . 

· First principal stress ( 1s ) and second 

principal stress ( 2s ) graphs are meet 

at 0 045 ,45q = -  (mutual angle). 

· Minimum ( 12,min 12,min,t g ) and 

maximum ( 12,max 12,max,t g ) shear 

stresses and strains are obtained 

at 0 045 ,45q = - , respectively. 

· Shear stress ( 12t ) gets lowest value 

relative to first ( 1s ) and second ( 2s ) 

principal stresses. 
· Maximum second principal strain 

( 2,maxe ) is obtained at 038q = , while 

its minimum value ( 2,mine ) is obtained 

at 050q = - .   
· The absolute strain values are 

fulfills: 1 12 2e g e> > in eachq angle 

according to initial assumptions. 
While all stresses and strains are normalized 
according to the remark above. 
 Spherical ends are divided into two 
groups: composites and homogenous. The 
case of homogenous spherical ends has been 
treated already in Sec.1. If the spherical ends 
are made of composite materials one should 
use 'The netting theory' which is beyond this 
essay discussion. For more information about 
this method see Ref. [26-29].  

ii. Thick Filament Wound Pressure Vessel 

 Thick-walled composites vessels in three-
dimensional coordinates were studied in 
detailed by Zu [30]. There are two types of 
methods for analyzing stress-strain 
relationships in thick-walled composites 
cylinder: (1) direct solution method and (2) 
stress function method. These methods are 
based on Lekhnitkii’s theory [31-32] as 
brought by Önder [10], Tsukrov and Drach 
[33]. I suggest the reader to read about these 
methods in Zu study [30]. From here, we will 

pass to discuss our final subject on failure 
criteria of composite materials.   

D. Failure criteria of composite materials 

 Failure criteria of composite materials 
have been discussed by [34-36] and others. 
There are two main criteria for failure of 
composite laminates. 

· Maximum Stress (or strain) criteria – 
this theory emphasizes mode of 
failure but neglects the effect of stress 
interactions. This criterion is 
considered to be quite conservative 
(independent criterion). The 
following conditions must be satisfied 
in tension and/or shear: 

               

     1 2 12,   , t t tF G Ss s t< < < ,     (52) 

while ,  ,  t t tF G S are the limiting 

tensile and shear strengths along 
principle material  directions, 
respectively. 

  Moreover, in compression case the 
following condition must be satisfied: 

             
          1 2,  c cF Gs s> > ,      (53) 

while ,  c cF G are the limiting 

compressive strengths along principle 
material directions, respectively. 

· Tsai-Wu failure theory (interactive 
criterion). This theory includes stress 
interactions in the failure mechanism 
and predicts first ply failure, but it 
requires some efforts to determine 
parameters. The mathematical 
formulation of this condition using 
[34] is:  

 
2 2

11 1 12 1 2 22 2

2
66 12 1 1 2 2

2

1

F F F

F F F

s s s s

t s s

+ + +

+ + =
,      (54) 

where, 
      

11 22 66 2

1 2 12 11 22

1 1 1
,  ,  ,  

1 1 1 1 1
,  ,  

2

t c t c

t c t c

F F F
F F G G S

F F F F F
F F G G

= = =

= - = - = -
 

(55) 
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while three dimensional generalize model of 
Tsai-Wu theory is presented by Bhavya et al. 
[36].  
 To sum it up, interactive theories which 
are based on curve fitting, like the Tsai-Wu 
criterion are preferable at predicting failure 
of a single lamina than independent criterion. 
However, in order to identify and understand 
failure mechanism, both methods should be 
used and compared against each other 
combined with FEM analysis. 

V. Conclusion 

 Composites and homogenous cylinders 
with and without spherical ends were 
investigated. Each kind of cylinder was 
examined for thick and thin geometries 
according to the following order. 
Analytical model of homogenous cylindrical 
vessel with hemispherical ends: 

· Thin walled cylinder with 
hemispherical ends. 

· Thick walled cylinder with 
hemispherical ends. 

· Homogenous cylindrical vessel failure 
criteria. 

· Compound cylinders. 
Analytical model of composite cylindrical 
vessel with hemispherical ends: 

· Wire wound thin cylinders with 
hemispherical ends. 

· Thick walled composite cylinders in 
polar coordinates. 

· Filament winding method estimation of 
composed cylinder: 

o Thin filament wound pressure 
vessel. 

o Thick filament wound 
pressure vessel. 

· Failure criteria of composite materials. 
    Each of these subjects was presented and 

discussed. Additionally, all subjects were 
also examined analytically, not including 
thick filament wound pressure vessel 
subject. Numerical investigation using 
MATLAB program was done for thin 
filament wound pressure vessel subject. 
Moreover, qualitative and quantitative tests 
were presented for homogenous thick 
cylinder stress field. Each method has its 

own advantages and disadvantages in cost, 
manufacturing, strength and weight as 
appear in this text and the relevant 
references. 
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Appendix 

 

 
      Table A.2. Property comparison from Ref. [10] 

 

 

Table A.1. American & European Pressure Vessels Standards. 

No.\Standard American Boiler and Pressure Vessel Code European Standards 

1 ASME BPVC Sec. I - Power Boilers 
EN 13445 - Unfired 

Pressure Vessels 

2 ASME BPVC Sec. VIII Div. 1 - Pressure Vessels 
PD 5500 - Unfired 

fusion welded 
pressure vessels 

3 
ASME BPVC Sec. VIII Div. 2 - Pressure Vessels 

(alternative rules) 
 

4 
ASME BPVC Sec. VIII Div. 3 - Pressure Vessels 

(high pressure vessels) 
 

5 
ASME BPVC Sec. X - Fiber Reinforced Pressure 

Vessels 
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     Table A.3. Filament wound products: Applications Vs. Resin systems used from Ref. [10] 
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